Edit Distance using Dynamic Programming

Edit Distance is quite a interesting and popular problem. Here I present an efficient bottom up C++ program to solve it.

Problem – We are given 2 strings. We have to find the “edit distance” or the cost of converting one string to other. We are allowed 3 operations – Insert, Delete, Replace. All 3 have equal cost that is 1 unit.

Example – Edit distance between “abc” and “abd” is 1. We replaced “c” with “d”. You can also see this as “Delete c”, then “Insert d” which would give a edit distance of 2. But since we try to minimize edit distance, we consider it as single operation that is Replace. Few more examples-
EditDistance(“ab”, “bc”) = 2
EditDistance(“man”, “woman”) = 2
EditDistance(“c”, “java”) = 4
EditDistance(“abcd”, “acd”) = 2

One of the above 4 examples has wrong answer! Tell me in comments which one is wrong,  and what is the correct answer 😉

We will use bottom up version of dynamic programming, as it is much cleaner and efficient (than top down). If the strings have length N and M, we will need a table of size (N+1)*(M+1). First we need to initialize the top row i.e TABLE[0][i] = i and first column i.e TABLE[i][0] = i. These are the base cases in which one of the string is empty. Now filling the rest of the TABLE column wise is simple-

TABLE[i][j] = min(
Here cost = 0 if STR1[i] = STR2[j], 1 if unequal

And the C++ function-

int EditDistance(string word1, string word2)
    int i, j, l1, l2, m;
    l1 = word1.length();
    l2 = word2.length();
    vector< vector<int> > t(l1 + 1, vector<int>(l2 + 1));

    for (i = 0; i <= l1; i++)
        t[i][0] = i;
    for (i = 1; i <= l2; i++)
        t[0][i] = i;

    for (i = 1; i <= l1; i++)
        for (j = 1; j <= l2; j++)
            m = min(t[i-1][j], t[i][j-1]) + 1;
            t[i][j] = min(m, t[i-1][j-1] + (word1[i-1] == word2[j-1] ? 0 : 1));
    return t[l1][l2];

The TABLE for “money” and “monkey” looks like->


1 is the final answer.

This entry was posted in Algorithm, Programming and tagged , . Bookmark the permalink.

10 Responses to Edit Distance using Dynamic Programming

  1. Jeremy W. Murphy says:

    EditDistance(“abcd”, “acd”) = 1

    Have you seen the C++ implementation on Rosetta Code?
    I have measured it as four times faster than your implementation. So I’m not sure where your claim of “very efficient” comes from. 🙂

    • vinayakgarg says:

      Thanks for pointing this.
      It would be useful if you also provide the code for comarison along with input. And do mention your OS, compiler and flags passed.

      • Jeremy W. Murphy says:

        I just used a very simple regime for testing and a handful of strings up to about length 10. I’ve also made some changes to the Rosetta Code implementation to make it even faster, which I will try to get uploaded to Rosetta Code.
        Linux, x86_64, gcc-4.7.2, -O2 -march=native -std=c++0x
        This is the guts of it, I’ve left out the window dressing for brevity:

        high_resolution_clock::time_point const t0(high_resolution_clock::now());
        for (size_t i(0); i < 10000000; ++i)
        edit_distance_three(s1, s2); // I have several edit_distance_xxxxx functions.
        high_resolution_clock::time_point const t1(high_resolution_clock::now());
        cout << "Total time: " << duration_cast(t1 – t0).count() << " milliseconds.\n";
        cout << "Average time: " << duration_cast(t1 – t0).count() / 10000000.0 << " nanoseconds.\n";

  2. Brett says:

    Could you explain what line 18 of your code does, please?

  3. ajay says:

    WOW very clearly explained 😀 Thanks a lot 😀

  4. Srinath says:

    great one.!

  5. please explain this: vector< vector > t(l1 + 1, vector(l2 + 1));

    • vinayakgarg says:

      This is used to initialize a 2D vector of size (l1+1)*(l2+1).

      One of the (many) vector’s constructor takes first argument as count of elements, and the second (optional) argument as default element value.
      So if I say `vector(5)`, that gives a vector of size 5, with default value of ‘0’. However if I say `vector(5, 42), that gives vector of size 5, where each value is set to 42`.

      Now what happens if the vector’s type itself is vector i.e vector of vectors. The constructor would be called something like vector(5, vector(2)); This simply gives me a vector of size 5, where each element is vector of size 2. Notices that the values in this 2D vector will be all 0. You can imagine this construction as matrix with 5 rows and 2 columns.


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s